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The modeling of laminar, fully developed mixed convection flow of a Bingham plastic 
in a vertical eccentric annulus, in which the walls are held at asymmetric constant 
temperatures is investigated. The momentum, continuity and energy equations are solved 
numerically using the finite-element method. The results obtained are found to be in good 
agreement with the analytical solutions found by using a narrow gap approximation; that 
is, the gap between the walls of the annulus is small compared with the inner radius. It 
is shown that different flow configurations exist depending on the buoyancy parameter, 
Grashof/Reynolds, including flow reversal and unsheared plug flow adjacent to the wall. 
Furthermore, if flow reversal occurs it is shown by the finite-element method that a pair 
of "true plugs" in which the velocity is independent of both the radial and azimuthal 
variables can exist at each of the widest and narrowest regions of the annulus. 
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I n t r o d u c t i o n  

Considerable attention has been given to the problem of forced 
convection flows with a non-Newtonian viscosity. However, 
many of these researchers have neglected the buoyancy forces, 
whereas the work of others has shown that for Newtonian 
fluids the free convection effects may be very important for 
surprisingly low applied temperature gradients. It is, therefore, 
important that the mixed convection effects of non-Newtonian 
flows are similarly investigated. 

This area of study is of great relevance as many of the fluids 
used for industrial purposes are non-Newtonian. The rheology 
investigated here, namely, the Bingham plastic, is among the 
most important. In the analysis of any non-Newtonian fluid 
the specification of the viscous term in the Navier-Stokes 
equation is the most important step. The Bingham plastic 
differs from a Newtonian fluid in that it will either not flow or 
will flow as an unsheared plug below a certain yield stress. 
Above this critical value the relationship between the stress and 
the rate of strain is linear as for Newtonian fluids. Industrial 
applications where the mixed convection effects of Bingham 
plastics in eccentric annuli are encountered include the flow of 
drilling and cementing mud in an oil well because, throughout 
the life cycle of the well, temperatures of fluids in the bore-weU 
vary and the temperature distribution in the formation 
cllanges; a detailed knowledge of the temperature distribution 
is vital for a correct job design and execution. One such 
operation is the placement of "cement" between the formation 
and the casing--the Bingham rheology can be experimentally 
shown to be representative of the cement. In this operation 
cement is first pumped down the well, inside the casing, and 
then back up the annulus displacing the drilling mud. To 
achieve this the setting time of the cement must be accurately 
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controlled, the temperature being a parameter that strongly 
affects the setting time. The flow of molten plastics in extrusion 
apparatus is another of the major industrial applications where 
the mixed convection flow of Bingham plastics is important; 
other applications can be found in the review article by Bird 
et al. (1983). 

In the present study, the assumption that the flow is fully 
developed, steady and laminar is made. This area of research 
has been extensively documented for Newtonian fluids. Tao 
(1960) describes an analytical method for solving the problem 
of fully developed mixed convection in a vertical parallel-plate 
duct. Further studies undertaken by Aung and Worku (1986a, 
1986b) describe how asymmetric wall temperatures lead to a 
skewness in the velocity profile and, if the magnitude of the 
buoyancy parameter Grashof/Reynolds is large enough, how 
flow reversal can occur at the cold wall. An exact solution for 
the velocity distribution in the fully developed region is 
provided. More recent work by Ingham et al. (1988) emphasizes 
the occurrence of regions of flow reversal and describes a 
method to deal with them numerically in undeveloped flows. 

The literature on the isothermal flow of Newtonian fluids in 
eccentric annuli is also well documented; see, for example, 
Snyder and Goldstein (1965) who provide an exact solution for 
the velocity distribution. The study of the corresponding 
non-Newtonian fluid flow model is, however, less well 
documented. Bird et al. (1983) reviewed the known exact 
solutions for the flow of the Bingham plastic in simple 
geometries including the parallel-plate duct and the concentric 
annulus. Guckes (1975) obtained numerical results for the 
Bingham plastic in an eccentric annulus over a limited 
parameter space, whereas Walton and Bittleston (1991) 
describe both analytical and numerical solutions for the 
isothermal flow of a Bingham plastic. 

Relatively little attention has been paid to the mixed 
convection, non-Newtonian fluid flow model. Jones (1991) 
studied the mixed convection flow of the Bingham plastic in 
the parallel-plate duct but doe, s not provide a quantifiable 
analytical solution. 

The present study has been sectioned in five parts. The 
analysis section that follows describes the scaling and equations 
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used throughout the article. The third section describes how a 
narrow gap approximation has been used to provide an 
analytical solution, and the penultimate section shows how a 
bipolar transformation can be employed to a simplified energy 
equation. This solution is then used in the momentum equation 
in its solution by the adopted numerical scheme, namely, the 
finite-element method (FEM). The concluding section shows 
the results found by using this scheme and makes a comparison 
between the results from the numerical and analytical solutions. 

A n a l y s i s  

The continuity equation for an incompressible fluid can be 
written as 

V*" u* = 0 (1) 

where asterisks denote dimensional quantities. The momentum 
equation can be written as 

D'u_* 
p* - -  = - V ' p *  + p'g* - V*" ~* (2) 

Dt* 
where p* is not constant everywhere. 

Neglecting expansion damping and viscous dissipation the 
energy equation can be written 

dT* 
- -  + (u_*" V * ) T *  = ~ V 2 T  * (3)  
t3t* 

We take into consideration the effect of the density 
gradients resulting from the temperature variations, by using 
the Boussinesq approximation in the gravitational or buoyancy 
term. 

p* = p*(1 - ~*(T* - T'm)) (4) 

Elsewhere we use p * =  p*, where P*m is the density at 
a reference point taken to be at the mean of the two wall 
temperatures. Using this approximation the momentum 
equation becomes 

D'u_* 
P*m --Dr, = - V ' p *  - V*" g* + p*mg*(l_ -- ~(T* -- T'm)) (5) 
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The relationship between the stress tensor and rate of 
strain tensor is given by 

;* =/z*~.* z *  > z *  (6) 

where 

~* = ~O*~ T* (7) 
(~*) 

is the Bingham rheology, and 

~*=0 ~*_<~* (8) 
In the preceding, ~.* is the stress tensor, ~* the rate of 
strain tensor, zy* the yield stress and/~* the consistency. The 
second invariant of the stress and rate of strain tensors are 
defined by 

z, = [~(~,:~.,)],/2 ~, = [~ , :~ , ) ] l / z  (9) 

Because the regions where the stress falls below the yield 
stress are unknown a priori, these have to be calculated as part 
of the solution. 

For a fully developed steady, laminar flow the momentum 
equation becomes 

V'p* = - V *  "~* + p*~q*(1 - ~(T* - T~)) (10) 

and the energy equation 

~V2T * = 0 (1.1) 

Using the notation shown in Figure 1 the eccentricity, e is 
defined to be e*/(R*o- R*). Equations 1-11 can be non- 
dimensionalized using wo* as a velocity scale in the vertical 
direction and d* as a length scale where d* = R* - R* 

w* x* y* /J* 
w = - -  x = - -  y = - -  /z = - -  (12) 

w* d* d* #* 

z*(d~o*) (d* )  T * - T *  "~ ~* - -  T = - -  (13)  
=/zo* ~ = "  w* TO*-T* 

and the modified pressure p 

d*2 
p = ~ (p* - p*o*z*) (14) 

/4o Wo 

N o t a t i o n  

Bn Bingham number 
Gr Grashof number 
Ni shape functions 
P pressure gradient 
Re Reynolds number 
R* radius of inner cylinder 
R* radius of outer cylinder 
T* temperature of fluid 
T* temperature at the cold inner cylinder 
T*I mean wall temperature 
To* temperature at the hot outer cylinder 
d* outer radius-  inner radius 
e* distance between axes of cylinders 
g* acceleration due to gravity 
p modified pressure 
p* pressure 

radial coordinate 
r* radial distance 
t* time 
u* velocity vector 

w* vertical velocity 
w* mean vertical velocity 
z* axial coordinate 

Greek letters 

=, fl bipolar coordinates 
diffusivity 
coefficient of isothermal compressibility 

~* rate of strain tensor 
gap width 

e small number used for numerical purposes 
0 azimuthal direction 
/z* consistency 
~, ~/ local coordinates used in the finite-element method 
p* fluid density 
p* fluid density at the moan temperature 
z* yield stress 
;* stress tensor 
X radii ratio 
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~e'--~ 
X* 

I t  

Figure I Schematic diagram of the eccentric annulus 

The Grashof number, Gr, is given by 

p*2g*~(X* - T*)d .3 
Gr = (15) 

~O.2 
the Bingham number, Bn, by 

Bn /to* (16) 

and the Reynolds number, Re, by 

pmd Wo 
Re = - -  (17) 

The nondimensional equations are 

z = / ~ .  z > Bn (18) 

= 0 z < Bn (19) 

where 

Bn 
U = 1 + -  (20) 

Gr 
- -  (T) (21) - V ' ~ = P + R e  

V2T = 0 (22) 

and P = dp/dz. The equation of motion is also subject to 
the volume flow constraint 

~ w d A  
- 1 (23) 

~ d A  

which along with the equation of motion determines P as 
well as the velocity field. 

The relevant boundary conditions required in the preceding 
geometry are no slip on the vertical walls and the prescribed 
temperatures at the walls, namely, T* on the inner cold wall 
and To* on the outer hot wall. On nondimensionalizing these 
boundary conditions we find that 

on the inner cylinder w = 0 and T = - 1 (24) 

on the outer cylinder w = 0 and T = + 1 (25) 

N a r r o w  g a p  a p p r o x i m a t i o n  

The assumption that the gap between the walls of the annulus 
is everywhere small in comparison with the inner radius is 
made. This can be perceived to be, to leading order, the 

equivalent of treating the annulus as a slot of variable width. 
To do this we define a dimensionless radial coordinate, ~ by 

r* = r~'(1 + 5~) (26) 

where r* is the radius of the inner bounding wall, and 
8 = d*/r* is a dimensionless gap width. We note that the 
bounding walls can now be represented by ~ = 0 and 

= h(0), where 0 and h = h*/d* are shown in Figure 1 and 
can be defined by the equation 

(e 2 + h 2 - 2eh cos 0 - 1)6 = 2(1 + e cos 0 - h) (27) 

Effectively the narrow gap approximation requires 8--* 0 
while the eccentricity remains O(1). We thus expand h in powers 
of 6 

h = ho + 6hl + 0(62) (28) 

and observe that 

ho = 1 + e cos 0 (29) 

In terms of the new coordinates (~', 0, z) Equation 21 becomes 

O~- + ~ ~" + dO J - P - --Re (T)  (30) 

For this model, we have 

dw (31) 

$o~-  1 + 6 ~  ~ (32) 

and expanding w as 

w = Wo + 8w 1 + O(82) (33) 

we have 

0wo 
r~z = I~z  = t~ ~ + 0(6) (34) 

To: = I ~ o ,  = 0 ( 8 )  

The energy equation (Equation 22) therefore becomes 

(35) 

~-~ + ~ ~r + [1 + 6~1 ~ \o -~J  = 0 (36) 

By expanding T as 

T = To + 6T1 + 0(62) (37) 

and equating leading order of powers of 6, we have 

~92T 
- -  = 0 (38) 

which implies that 

T o = A~ + B (39) 

Imposing the boundary conditions on 

= 0 ,  T = - I  and o n ~ = h o ,  T =  +1 (40) 

we have 

2 
_ 1  ,41, 

where ho is given by Equation 29. Thus the leading terms 
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in Equation 30 give 

c3¢t_2: = ~@ _ p -  G_rr [ ( ~ ) @ -  Re 11 (42) 

It is now convenient to note that the analytical solution 
for this mixed convection model is more complex than the 
corresponding isothermal case. In the latter model, one could 
appeal to the symmetry in the radial direction, whereas this is 
no longer the situation. Additionally, whereas only one 
fundamental flow configuration of interest exists in the 
isothermal model, essentially there are now four as shown in 
Figure 2. The first configuration is shown schematically in 
Figure 2a. At the hot outer wall (right) the buoyancy force acts 
vertically upward, with a corresponding buoyancy force acting 
vertically downward adjacent to the cold wall. When the 
Grashof number is small, as in this configuration, the vertically 
upward acting pressure gradient is not great enough to 
overcome the buoyancy effect at the cold wall, and no reverse 
flow or zero velocity flow occurs. As the Grashof number 

increases, the buoyancy effects are increased. A situation is 
reached where the buoyancy force now overcomes the pressure 
gradient adjacent to the cold wall, to an extent where the stress 
is less than the yield stress and hence zero velocities occur as 
shown schematically in Figure 2b. In Figur~ 2c, the buoyancy 
force exceeds the pressure gradient at the cold left wall to such 
an extent that the yield stress is overcome here. At the hot right 
wall the combination of the pressure gradient and buoyancy 
forces are unable to overcome the yield stress. Finally, 
increasing the Grashof number further results in a reverse flow 
situation as shown schematically in Figure 2d. From Equations 
20 and 34 we have, to leading order, 

~wo [~Wo~ ~,~ = ~ + Bn s g . ~ )  (43) 

The analytical solution for Equation 42 therefore requires 
previous knowledge about the directions of the velocity 
gradient. It is therefore necessary to consider each profile and 
region separately. For the purposes of this study, results are 

a tu 
4 
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Figure 2 The four possible velocity profiles for Bingham plastics with superimposed schematic stress fields 
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only shown for the profile corresponding to Figure 2a, but 
results for the remaining three profiles have been found using 
similar techniques. The flow through the duct with respect to 
Figure 2a is given by 

( G r )  t2 G r t 3  
w ° = -  P - R e e  2 Re3ho (Bn-k )~  (44) 

~1 < t < t2 

w o = Wplug (45) 

r2 -< f < ho 

1 ( _ G r ~ ( ~ 2 _ h  2) 1 Gr 
w ° = - - 2  P Re/ "  3-'ho Re 

x (t a - ha) + Bn(t  - ho) + k(t - ho) (46) 

where wpluw is given by 

( Gr)~2 Gr t~ _ ( B n _ k ) t l  (47) 
Wplug = - -  P - Re 2 Re 3ho 

Gr'X 2 1 Gr 
_ 1 P - R e )  ( ~ 2 - h 0 2 ) - - -  

2 3ho Re 

x (~23 -- h a) + Bn(~ 2 - ho) + k(~ 2 - ho) (48) 

We see from the preceding that the velocity profiles contain 
an unknown constant of integration k. To overcome this 
difficulty the equations for the plug flows are considered. These 
occur in pairs and include the desired constant, other known 
parameters and the yield points (the tv's in Figure 2 where 
p = 1, 2 . . . .  5). The yield points can themselves be written in 
terms of the constant of integration by noting that the stress 
has to be equal to +Bn at these points. Applying this 
condition to the leading order stress Equation 42 we find that 

_ ( p  G r ' ] +  Gr~2 + 4( Gr "~Bn + k)] t/2 
,hoR,  

rp 2Gr 

hoRe (49) 

- ( P - ~ e e ) + [ ( p - G r ~ 2 - 4 ( G r ~ B n - k ) l  '/2 
^_ - Re/  \hoRe J d 
rp  = 

2Gr 
(50) 

hoRe 

where t .  + are the values of t when the stress equals + Bn 
and ~p ~he corresponding values of t when the stress equals 
- B n  (see Figure 2 for schematically superimposed stress 
fields). We have for this profile 

( _ 1 P _ t~ + ho 2) 
2 Ref~ 1 

1 Gr 
- - -  - -  ( t ~  - t~ + ho 3) 

3ho Re 

- Bn(tx + t2 - ho) + k(tx - t 2 + ho) = 0 (51) 

The solution to this equation and the corresponding 
equations for the profiles as shown in Figures 2b--d can be 
found numerically using Brent's method which combines 
bisection and inverse quadratic interpolation and is described 
in Press et al. (1990). Figure 2a shows a positive velocity 
gradient at the inner wall implying a stress greater than + Bn 

(see Equation 43). Similarly, the stress at the hot outer wall has 
a value less than - B n  owing to the negative velocity gradient. 
Arguments of a similar nature are applied to the remaining 
profiles. When these conditions are inserted in the stress 
equation (Equation 42) the following results, which refer to 
Figures 2a--d, respectively are obtained: 

Pho- Bn > k > Bn 

min(Pho - Bn, Bn) > k > - B n  

min(Pho + Bn, - B n )  > k > - B n  + Ph o 
min(Pho - Bn, - B n )  > k 

(52) 

(53) 

(54) 

(55) 

The constant of integration k can only be satisfied by any 
one of the four fundamental sets of inequalities given earlier, 
for any given combination of P, h o and the Bingham number, 
Bn. 

The analytical solution therefore involves sweeping anti- 
clockwise from 0 = 0 to 0 = n finding the radial profile at 
each 0 for a given pressure gradient. When a constant flow rate 
is specified, the pressure is iterated on until the correct flow 
rate is found. 

N u m e r i c a l  s o l u t i o n  

Numerical solutions for this mixed convection model have been 
found by employing the FEM. One of the major problems 
encountered when using the Bingham plastic rheology is the 
theoretically infinite viscosity in regions of plug flow. Finite 
difference methods are particularly susceptible and encounter 
convergence difficulties through loss of significant digits. The 
FEM has the advantage over this and other methods in that 
it can be extended to higher dimension problems, to more 
complex geometries and, most important, remain stable in the 
regions of plug flow. However, it is still necessary to introduce 
a small parameter, e into the rheology to avoid the possibility 
of a singularity when the shear rate y* becomes identically zero 
(i.e., when the yield surface is approached). The approach is the 
one adopted by numerous authors including Beris et al. (1985). 
The only occurrence of the method being previously used with 
non-Newtonian fluids of any kind in an eccentric annulus is 
by Walton and Bittleston (1991) to find the solution for the 
isothermal axial flow of a Bingham plastic. 

With reference to Equations 20-22 we have the viscosity, 
momentum and energy equations. 

Bn 
# = 1 + -  (56) 

(~)+e 
Oz~= &y= Gr 

- e + - -  (T) (57) 
Ox dy Re 

V2T = 0 (58) 

For the solution to the energy equation (Equation 58) in 
the eccentric annulus, a bipolar transformation is used. The 
bipolar coordinates are defined by the transformation 

x+ iy=ic c o t ( ~ - ~ )  (59) 

where c is a constant. In accordance with the work of 
Snyder and Goldstein (1965) we have 

c sinh fl 
x = (60)  

cosh/~ - cos = 

c sin ct 
y = (61) 

cosh/~ -- cos ~t 
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where 0 _ < = ~ 2 n ,  and - o 0 < / / <  +o0. Because of the 
symmetry of the problem, it is again only necessary to consider 
half of the annulus. The transformation from physical to 
bipolar coordinates maps the eccentric annulus to the 
rectangular region shown in Figure 3. 

The Laplacian of the temperature, T, in bipolar coordinates 
is 

(cosh fl -- COS ~)2 ['02T O2T'~ O2T 
V2T 

= Y " 
(62) 

For this fully developed model, the temperature variation is 
only dependent on// ,  that is, the energy equation is reduced 
to 

02T 
- -  = 0 (63) 

for which the solution in bipolar coordinates is found to be 

/L +/~, - 2/~ 
T = (64) 

~ - ~o 

where fli is the value of fl on the inner cylinder and fie the 
value on the outer cylinder. It can be shown that 

c = R* sinh fie = R* sinh fli (65) 

fli= c°sh-l[ x(l+e2)+(1-e2! ] 2 x e  (66) 

fl°= c°sh-l[ x(1-e2)+(l+e2!]2e (67) 

where X = R*/R* and e is the eco~ntricity. Inverse hyperbolic 
cosine functions cannot be evaluated by computational 
methods, consequently Equations 66 and 67 are transformed 
to logarithmic functions, that is, 

//i = ln(A + (A 2 - I) 1/2) (68) 

where 

X(1 + e 2) + (1 - e 2) 
A = > 1 (69) 

2ze 

and 

flo = ln(B + (B 2 - 1) t/2) (70)  

where 

z ( l - - e  2 ) + ( l + e  2) 
B = > 1 (71)  

2e 

~ T = -I , r" = /~" 

& 
T = + I  r" = Ro" 

Figure 3 The geometry in the transformed bipolar plane 
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Figure 4 Schematic diagram showing the mesh 

3 

5 

5 

3 

Figure 5 The parametric element mapping 

r/ 

The final equation necessary to transform Equation 64 back 
to the Cartesian coordinate system is 

1 + (x + c) 2] 
fl = ~ In - -  (72) 

+ 

A solution for the energy equation can therefore be found 
analytically in the required coordinates. 

The finite element method was appli~l using six-noded 
triangular elements, where-an iso-parametric transformation 
allows the elements to align themselves with the boundary. The 
mesh is shown in Figure 4. 

The curvilinear element in the x-y plane is mapped onto a 
triangle in the ~ - ~ plane as shown in Figure 5. The (xi, yt) 
points are the nodal positions in the x-y plane, so we can write 

6 

x = ~ Ni(~, q)xi (73) 
i = 1  

6 

y = ~ Ni(~, q)y~ (74) 
i = 1  

where N~ are the shape functions. In terms of the local area 
coordinates these are, for a typical corner node, 

N3 = (2L2 - 1)L2 (75) 

and for the typical mid-side node, 

N, = 4L2L 3 (76) 

where L1, L2 and La are the area coordinates associated with 
the three vertices of the standard triangle. In terms of the local 
Cartesian coordinate system we have 

Lx(~, r/) = ~1 + 20  (77) 

L2(~, q) = ~(1 - ~ -- x/~r/) (78) 

L3(~, ~/) = ~1 - ¢ + x/~r/) (79) 
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The solution w may be approximated by 
6 

w = ~ Nt(¢, r/)w i 
i= l  

where wi are the nodal values of the velocity. 
Defining the inner product to be 

(80) 

(I; m) = fffA lm dA (81) 

we obtain for each element 

(N'; -V'(~Vw)) = ( N'; P +Gr ) Re (T) (82) 

where T is found using Equations 64-72. Using Green's 
theorem and ignoring the boundary integrals that cancel on 
the element to element boundaries we obtain 

Gr 
( S i , x ; / , t w x )  + (Ni ,y ;  [tWy> = P(Ni; 1) + Re (Ni; T)  (83) 

where Nk, equals aNd~x. As this equation cannot be 
integrated directly, solutions were produced using a seven- 
point Gaussian quadrature rule for each element. It is also 
necessary to find the rate of strain over each element so that 
the viscosity variation can be found. Using Equation 80 we can 
show that 

2 '~2]1/2 

" ~ - [ ( | = ~  N i , . ~ I / i ) ~ - ( i = ~  N i , y w i )  j (84) 

Noting that # is a function of the velocity, and consequently 
Equation 83 forms a nonlinear system of equations, we use 
Picard iteration to linearize the system thereby removing this 
difficulty. The method of Walton and Bittleston (1991) can be 
used to find the pressure gradient, P, by writing the volume 
flow constraint, Equation 23 as 

(w; 1) = (1; 1) (85) 

that is, 
6 

(N,; 1)w, = (1; 1) (86) 
i= l  

The solution is found by including this equation with the 
equation of motion and solving for 

(wl  . . . . .  w J P )  T (87) 

where there are n nodes. 

R e s u l t s  a n d  d i s c u s s i o n  

In the present study the main parameters are the buoyancy 
parameter Grashof/Reynolds, the Bingham number and the 
eccentricity. Although results have been produced for a wide 
parameter range, results are only shown for a Bingham 
plastic with Bingham number = 12. These results have been 
restricted to those where the constant volume constraint, as 
described by Equation 23, has been applied, and the pressure 
gradient, P, is therefore determined as a consequence. All the 
results presented in this study were calculated on a grid 
consisting of 25 x 41 nodal points in the radial and azimuthal 
directions, respectively. A comparison between these results 
and the corresponding ones computed on the grids involving 
13 x 21 nodes and 7 x 11 nodes would suggest that the 
solutions obtained with the finer grid are within the required 
accuracy, as the solutions found using the coarser grids were 

within 1 and 5 percent, respectively, of those found using the 
finer grid. We can therefore conclude that it is unnecessary to 
increase the number of nodal points further and that the results 
have converged. 

Figure 6 shows the velocity contours and the radial flow 
profiles found using the FEM, in the narrowest and widest 
sections of the annulus with the parameter Grashof/ 
Reynolds = 250. Figure 6a represents the flow profile for a 
concentric annulus (eccentricity = 0). We note the presence of 
the expected plug in the radial direction and the tendency of 
the fluid to move quicker adjacent to the hot outer wall. When 
the eccentricity is increased to 0.25 there is a large increase in 
the maximum velocitY in the wider section of the annulus, with 
a corresponding decrease in the narrower side of the annulus 
(see Figure 6b). A further increase in the eccentricity leads to 
the situation shown in Figure 6c. Here the velocity has again 
increased in the widest section but has almost decreased to zero 
in the narrow region. A careful examination reveals that this 
is an example of zero velocity adjacent to the cold wall. A 
further increase in the eccentricity would lead to zero velocity 
in the narrow region. 

Figure 7 shows the velocity contours and profiles with the 
same parameters as in Figure 6, with the exception of the 
buoyancy parameter Grashof/Reynolds, which is increased to 
500. As the eccentricity is increased the maximum and 
minimum velocities in the wider part of the annulus increase 
with a decrease in the narrower part. In Figure 7c we encounter 
the special case of zero flow adjacent to the hot wall with flow 
reversal adjacent to the cold wall in the narrower part of the 
annulus. 
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are also plotted. The figure shows that true plugs can exist at 
the widest and narrowest part of the annulus. Furthermore, if 
reverse flow occurs we find two true plugs in each region 
provided that the flow extends azimuthally all the way around 
the annulus. 

The results in this article have been produced by solving the 
momentum and energy equations (Equations 21 and 22) subject 
to the relevant boundary conditions. Two approaches have 
been used: the first, using the FEM, incorporates a bipolar 
transformation used to solve the simplified energy equation 
resulting in a nonlinear temperature gradient, and the second 
approach uses a narrow gap approximation giving a linear 
temperature gradient as shown in Figure 9. 

Excellent agreement is reached (within 10 percent) when 
6 < 0.1 even when the parameter Grashof/Reynolds is as high 
as 3,000. This is demonstrated in Figures 10ad,  which show 
the maximum velocities found along radial lines and plotted 
against corresponding azimuthal positions for parameters 

= 0.1, Gr/Re = 3,000, Bn = 12 and eccentricities 0, 0.25, 
0.5, and 0.75, respectively. 

When the value of 6 is increased to as high as 0.4, agreement 
between the results found by the numerical method and the 
narrow gap approximation is still within 20 percent provided 
that Grashof/Reynolds < 500. Alternatively, if this latter 
parameter is increased while sustaining a high 5, the velocities 
remain in good agreement, although the pressure gradient, P, 
becomes unreliable. This is demonstrated in Table 1 in which 

= 0.3, eccentricity = 0, 0.25 and 0.5 and Gr/Re = 0, 500, 
1,000 and 3,000. 

Figure l la shows the nondimensional velocity plotted 
against the radial position in the widest region of the annulus 
for 5 = 0.3, eccentricity = 0.25 and Gr/Re = 3,000. Figure 1 lb 
shows the maximum and minimum nondimensional velocities 
found along radial lines and plotted against the corresponding 
azimuthal position for the same parameter values. Both figures 
clearly demonstrate the good agreement between the numerical 
and analytical approximation velocities. In contrast, Table 1 
shows that for the corresponding parameter values the pressure 
gradient obtained analytically is 7, whereas the numerically 
predicted value is 216. By solving analytically for the 
Newtonian flow using quadratic polynomials to approximate 
for the nonlinear temperature gradient, we can show that the 
pressure gradient is prone to error, whereas the velocity 
distribution is not. 

T 

Figure 8a shows the numerical radial velocity profiles in the 
widest region of the annulus with varying buoyancy parameter 
Grashof/Reynolds and eccentricity = 0.25. In the study by 
Walton and Bittleston (1991) it is shown that there exists two 
types of plug in the eccentric annulus for isothermal flow. The 
first, referred to as a pseudoplug, occurs in the radial direction 
(i.e., the velocity is independent of the radial variable), whereas 
in the second, the velocity is also independent of the azimuthal 
direction. This second plug, known as a true plug, occurs at 
the widest, and in some cases, narrowest part of the annulus. 
The corresponding results for this mixed convection model are  
shown in Figure 8b, again plotted for a Bingham plastic, 
Bn = 12. The maximum velocities, found along radial lines, are 
p l o t t e d  against the corresponding azimuthal positions when 
the Grashof/Reynolds number = 0, 250 and 500. When reverse 
flow regions exist (i.e., Gr/Re = 500), the minimum velocities 
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Tab le  1 Variation of pressure gradient obtained numerically and analytically as a function of 
eccentricity for Gr/Re = 0, 500, 1,000 and 3,000 and c~ = 0.3 

Gr/Re = 0 Gr/Re = 500 

Pressure gradient Pressure gradient 
-- 0.3 Error Error 

Eccentricity Numerical Analytical percent Numerical Analytical percent 

0.00 379 388 2 334 378 13 
0.25 349 356 2 303 345 14 
0.50 288 295 2 233 274 18 

Eccentricity Gr/Re = 1,000 Gr/Re = 3,000 

0.00 284 362 27 40 246 515 
0.25 247 325 32 7 216 2986 
0.50 155 237 53 - 8 6  154 - -  

Conclusions 

Results obtained using the FEM have been compared with an 
approximate analytical solution that has been found by using 
a leading order narrow gap approximation. It is shown that 
four possible flow configurations exist, depending on the 
buoyancy parameter Grashof/Reynolds. In contrast to the 
corresponding isothermal model, flow reversal and motionless 
regions can occur adjacent to the walls of the annulus. In 
agreement with the findings of Walton and Bittleston (1991) 
plug regions exist where the velocity is constant in the radial 
direction. These regions, referred to as pseudoplugs, are no 
longer of uniform width or centrally placed as in the isothermal 
model, but lie adjacent to the outer wall In flow reversal 
situations we find in coexistence a corresponding pseudoplug 

region, extending azimuthally around the annulus adjacent to 
the cold inner wall, with a negative plug velocity. As in the 
isothermal case, a motionless region filling the gap between the 
walls can still occur in the narrowest part of the annulus. 
Additionally, true plugs are identified by the FEM in the widest 
and nc'rowest regions of the annulus. It is important to note 
that the leading order narrow gap approximation is inadequate 
to predict these regions and that greater accuracy, as shown 
by Walton and Bittleston (1991), is required. In cases of flow 
reversal the possibility of a pair of true plugs, one with a 
constant positive velocity and the other with constant negative 
velocity, arises in each of the widest and narrowest parts of the 
annulus. 

A comparison of the numerical and narrow gap approxima- 
tion results shows good quantitative agreement for relatively 
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Figure 11 6 = 0.3, Gr/Re = 3,000, e = 0.25: (a) radial velocity 
distribution in the widest region of the annulus; (b) variation of 
the maximum and minimum velocities found along radial lines 
and plotted against the azimuthal position 

small dimensionless gap widths, 6, even when the buoyancy 
parameter Grashof/Reynolds is relatively high. An increase in 
6 still allows good agreement provided that the buoyancy 
parameter is relatively low. It can be shown that as this latter 

Mixed convection flow of Bingham plastic: N. Pate/and D. B. Ingham 

parameter increases, although the velocities remain in good 
agreement, the pressure gradient as obtained analytically 
deteriorates. This is primarily because of the temperature 
gradient approximation in the narrow gap solution. 
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